Partner unserer Mobilitätsprogramme:

Deutsches Elektronen-Synchrotron - DESY

Wo Physik und Data Science verschmelzen: Am DESY ermöglichen modernste Technologien und künstliche Intelligenz bahnbrechende Einblicke in die fundamentalen Bausteine der Materie.

Mit HIDA’s Mobilitätsprogrammen können Data-Science-Talente am DESY – einem der weltweit führenden Teilchenbeschleunigerzentren – neue Perspektiven auf das Universum und die Grundlagen der Materie gewinnen.

Jetzt bewerben!

Die Programme

Mit HIDA das Desy kennen lernen

Das Desy ist Teil der Helmholtz Gemeinschaft.

Mit folgenden Programmen können Data Science Talente am Zentrum forschen.

Am DESY ermöglichen modernste Technologien bahnbrechende Einblicke in die fundamentalen Bausteine der Materie. Als eines der weltweit führenden Forschungszentren für Teilchenbeschleunigung setzt DESY auf hochentwickelte Detektoren und Beschleunigertechnologien, um neue physikalische Phänomene zu erkunden – von der Erzeugung des intensivsten Röntgenlichts bis zur Beschleunigung von Teilchen auf Rekordenergien.

Mit seiner einzigartigen Forschungsinfrastruktur in Europa treibt DESY nicht nur die Photonenforschung und die Teilchen- sowie Astroteilchenphysik voran, sondern auch die Entwicklung zukunftsweisender Beschleunigertechnologien.

Forschungsschwerpunkte:

  • Teilchen- und Hochenergiephysik
  • Photon- und Synchrotronforschung
  • Entwicklung neuer Materialien und Nanotechnologien
  • Astroteilchenphysik und Kosmologie
  • Quantenphysik und Plasmaphysik

Die Standorte

Die Standorte

Hauptstandorte: Hamburg & Zeuthen

Forschungsinfrastruktur:

  • PETRA III (Speicherring für Synchrotronstrahlung)
  • European XFEL (Freie-Elektronen-Laser)
  • FLASH (Freie-Elektronen-Laser für ultrakurze Lichtpulse)

 

Kompetenzen des DESY im Bereich Data Science & KI

DESY nutzt modernste KI- und datengetriebene Methoden zur Analyse hochkomplexer physikalischer Prozesse. Interdisziplinäre Teams arbeiten gemeinsam an innovativen Simulationsmodellen und Algorithmen für Experimente in der Teilchen- und Photonenforschung.

Durch den Einsatz leistungsfähiger KI-Modelle und Big-Data-Analysen werden enorme Datenmengen verarbeitet, um tiefere Einblicke in die Struktur der Materie und die Eigenschaften neuer Materialien zu gewinnen.

  • KI-gestützte Analyse von Teilchenkollisionen und Strahlungsexperimenten

  • Automatisierte Mustererkennung in experimentellen Daten

  • Maschinelles Lernen für die Optimierung von Beschleunigertechnologien

  • Entwicklung von Simulationsmodellen für Quanten- und Plasmaphysik

  • Multimodale Datenintegration zur Verbesserung experimenteller Präzision

Neben den rund 2.900 Mitarbeitende arbeiten jährlich über 3.000 Gastwissenschaftler aus mehr als 40 Ländern an den DESY-Anlagen, um fundamentale Prozesse im Mikrokosmos zu erforschen.

Bewerbungshinweise

Hinweise zur Bewerbung

Helmholtz-Betreuer

Lernen Sie hier einige potentielle Gastgeberinnen und Gastgeber an verschiedenen Helmholtz-Zentren kennen und erfahren sie mehr über deren jeweilige Data Science-Forschung durch einen Klick auf die Karten.

Bitte beachten Sie: Kontaktieren Sie Ihren potenziellen Betreuer oder Ihre potenzielle Betreuerin bitte vorab per E-Mail, um ein Forschungsprojekt vorzuschlagen und zu besprechen. Reichen Sie erst nach dieser Klärung Ihre Bewerbung ein.

Wenn Sie Fragen haben, senden Sie bitte eine E-Mail an: hida@helmholtz.de

Sie möchten selbst gerne Helmholtz-Gastgeber werden und suchen nach Unterstützung für Ihr Forschungsprojekt? Dann wenden Sie sich ebenfalls an die oben genannte E-Mail Adresse.

Jetzt bewerben!

Die Hosts am Desy

Lernen Sie hier einige potentielle Gastgeberinnen und Gastgeber am Desy kennen und erfahren sie mehr über deren jeweilige Data Science-Forschung.

Bevor Sie Kontakt mit den potenziellen Gastgebern aufnehmen, lesen Sie bitte die Hinweise zur Bewerbung. 

Jochen Küpper
Controlled Molecule Imaging

Ansprechpartner

Jochen Küpper
Controlled Molecule Imaging

Short summary of your group's research: We develop innovative methods to obtain full control over large molecules and nanoparticles. These methods and the created controlled samples are exploited in fundamental physics and chemistry studies to unravel the underlying mechanisms of chemistry and biology by watching molecules at work. This is coupled with advanced experimental control and data acquisition software, including on-the-fly data reduction, as well as theoretical and computational physics – both utilizing machine learning approaches for improved performance.

 

What infrastructure, programs and tools are used in your group? 

Have a look on our website.

 

What could a participant of the HIDA Trainee Network learn in your group? How could he or she support you in your group? Machine learning in theoretical physics and quantum chemistry and in real-time data reduction – benefit from current expertise and improve our approaches.

Thomas White
Scientific Computing (Photon Science)

Ansprechpartner

Thomas White
Scientific Computing (Photon Science)

Short summary of your group's research: We are developing computational tools for processing large crystallographic datasets consisting of many hundreds of thousands of individual frames.  Recently, we are moving towards real-time data processing, with the aim of making the data analysis step "disappear" - becoming part of the data acquisition process.  Our main product embodying this work is the free and open source "CrystFEL" software package.

   

What infrastructure, programs and tools are used in your group? 

Infrastructure: Gitlab, DESY "Maxwell" cluster

Tools: HDF5, SLURM, GSL, OpenCL, ZeroMQ, MessagePack, CMake, Meson, GTK and more

Languages: C/C++, Python, Lisp and others         

 

What could a participant of the HIDA Trainee Network learn in your group? How could he or she support you in your group? As well as working with large-scale accelerator-based photon facilities (PETRA III and European XFEL, plus other facilities worldwide), you would gain insight into developing a widely-used (>100 worldwide users) domain-specific software package.  For instance, how to balance the implementation of cutting-edge scientific methods with other considerations such as stability and reliability.  During your stay, you could contribute (for example) by experimenting with a new way of processing data, speeding up existing processing methods, or implementing one of the many requested features in CrystFEL.

Andrey Yachmenev
Controlled Molecule Imaging

Ansprechpartner

Andrey Yachmenev
Controlled Molecule Imaging

Short summary of your group's research: Our group is working on the development of computational techniques and high-accuracy simulations to improve our knowledge of the nuclear dynamics and spectra of molecules interacting with external electromagnetic fields. We're also working on ways to simulate ultrafast imaging experiments like photo-electron circular dichroism and laser-induced electron diffraction. We have recently begun to investigate various machine learning tools in applications to our problems, which range from solving differential equations to developing effective representations for molecular potential energy surfaces, as well as analyzing and inverting experimental photoelectron imaging data. 

 

What infrastructure, programs and tools are used in your group? HPC, scientific computing and machine learning tools implemented in Python and Julia.

 

What could a participant of the HIDA Trainee Network learn in your group? How could he or she support you in your group? You will develop or expand your grasp of many theoretical, computational, and experimental aspects of quantum molecular dynamics, high-resolution spectroscopy, photoelectron imaging, and machine learning applications to these challenges. You may learn more about software development techniques by contributing into development of open source software for molecular dynamics simulations.
We offer highly exploratory projects in development of neural networks for efficient solution of Schrödinger equation for nuclear motion and photo-electron dynamics, mathematical analysis of these approaches, and analysis of experimental photoelectron imaging data. We welcome applicants from a variety of disciplines with some background in machine learning and can offer and adapt a range of possible projects.

Marek Kowalski
Astroparticle physics and the IceCube experiment

Ansprechpartner

Marek Kowalski
Astroparticle physics and the IceCube experiment

Short summary of your group's research:

We are performing high energy neutrino astronomy using the observatories IceCube and RNO-G, as well as as the future IceCube-Gen2. Furthermore, we are working on optical surveys such as the Zwicky Transient Facility and the UV satellite ULTRASAT. The joint exploitation of the data enables new routes in multimessenger astrophysics. A key tool to combine the multimessenger data is AMPEL, a software framework developed by my research group to analyses realtime time series.

 

What infrastructure, programs and tools are used in your group?

AMPEL, IceCube, ZTF

 

What could a guest researcher learn in your group? How could he or she support you in your group?

Inference of galaxy properties and properties of astronomical transients using machine learning applications on multi band time series and catalog data. 

Annika Eichler
Intelligent Process Controls

Ansprechpartner

Annika Eichler
Intelligent Process Controls

Short summary of your group's research: 

Intelligent Process Controls (IPC) is a subgroup of the Machine Beam Controls (MSK) group at DESY, pushing forward innovative research for the autonomous operation of particle accelerators at the interface of machine learning, control. For this using reinforcement learning and other cutting-edge optimization techniques. IPC is also engaged in developing advanced feedbacks and enhancing fault diagnosis and anomaly detection through machine learning.

 

What infrastructure, programs and tools are used in your group?

The participant will have access to high-performance computing infrastructure at DESY. As programming languages, we mainly use Python.

 

What could a guest researcher learn in your group? How could he or she support you in your group?

As an interdisciplinary research team of experts from control theory, computer science and physics, a participant of the HIDA Trainee Network can gain experience in different directions and support many different applied projects. Here data mining projects as for anomaly detection are possible but also control and optimization problems. For the latter, we strongly encourage the Trainee to participate in shifts and applying the developed methods to the accelerator. 

Desy in a nutshell

Alternativ-Text

Newsletter bestellen